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In this survey article, some basic properties of quantum logics are described, 
such as physical motivation, basic examples and constructions, and state spaces 
and observables. Some recent results concerning joint distributions and commu- 
tators and their relations to uncertainty relations, Bell inequalities, independence 
of center, automorphisms and state space, are included. 

1. I N T R O D U C T I O N  

The development of  quantum mechanics has shown that the classical 
Kolmogorovian probability theory based on a triple (f~, S, P), where f~ is 
a nonempty set, S is a a-algebra of  subsets of  f~, and P is a probability 
measure on S, is not suitable to describe quantum mechanical experiments. 
An alternative approach, the traditional quantum mechanics based on a 
Hilbert space, was suggested by von Neumann.  The latter model has been 
successfully used to describe quantum mechanical experiments, but failed in 
a satisfactory physical motivation. In the historic paper  of  Birkhoff and 
von Neumann (1936), "The logic of  quantum mechanics," the authors 
suggested to replace the Boolean a-algebra B, representing the set of  
random events in the classical model, by a more general algebraic structure 
called a "quan tum logic." The authors suggested a kind of modular  lattice, 
a continuous geometry, as the suitable replacement. This algebraic struc- 
ture is nondistributive, but contains many Boolean subalgebras, and the 
basic idea was that these Boolean subalgebras should represent those 
propositions ( random events) which can be simultaneously verified by one 
experiment; in the traditional Hilbert space model, the role of  "quan tum 
logic" is played by the lattice of  all closed subspaces of  the underlying 
Hilbert space, which is not modular  unless the Hilbert space is finite 
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dimensional. But finite-dimensional Hilbert spaces are not sufficient to 
describe all quantum mechanical experiments. Therefore, in the further 
development, modularity has been replaced by a weaker property, ortho- 
modularity, which is shared by both Boolean algebras and lattices of closed 
subspaces of Hilbert spaces of any dimension. This new approach started 
to be intensively developed in the 1960s in basic papers by, e.g., Zierler 
(1961), Varadarajan (1962), Mackey (1963), Piron (1964), MacLaren 
(1964), Gunson (1967), Gudder (1965), and Pool (1968). 

In Mackey's (1963) work a probabilistic motivation of the quantum 
logic approach was given. We will briefly describe his axioms. Mackey 
starts with two abstract sets (9 and 5 P, where (9 represents the set of all 
observables (that is, physical quantities), and ~ represents the set of all 
physical states of a physical system. We suppose, as usual, that the result 
of a measurement of an observable is a real number. From any physical 
theory, we expect an answer to the question: " I f  a physical system is in the 
state s e5  ~, what is the probability that a measurement of an observable 
A e(9 gives a result in a subset E of the real line R?" It is also natural to 
consider only Borel subsets of ~, and we denote by N(N) the Borel 
a-algebra of ~. Mackey's axioms then can be written as follows: 

1. There is a function p: 5# x (9 x ~(N)  ~ [ 0 ,  1] which for every fixed 
s e5  f and A ~(9 is a probability measure on N(R). 

2. p ( s l , A , E ) = p ( s 2 ,  A , E  ) for every A e(9 and every E e ~ ( R ) = ~  
S 1 = S  2 . 

3. p(s, A i , E  ) =p(s, A2, E) for every sE5 p and every E e N ( R )  
Al = A2. 

Roughly speaking, axioms 2 and 3 mean that we can distinguish two 
states or two observables only by results of measurements. Define an 
equivalence relation on (9 x ~ ( ~ )  as follows: (A,E)  ~ ( B , F )  if 
p(s, A, E) =p(s, B, F) for all s e 5  p and let IA, E I be the equivalence class 
containing (A, E). 

Put L = {I A, El :  A ~(9, E ~ ( R ) } .  For s e 5  ~ let s: L ~ [ 0 ,  1] be defined 
by s(a) = p(s, A, E) when a = I A, E I. 

4. For  any s i s5  P, ~i > 0, i eN ,  ~ i ~  e~ = 1 there is s e 5  f such that 
s(a) = ~ i~N eisi (a) -~ s(a) (a eL). 

5. If  (a~)i~ c L  are such that s(a~) +s(aj)  < 1 for any i, j ~ N ,  i # j ,  
then there is a b eL  such that s(b) + ~ ~ s(a~) = 1. 

Axiom 4 defines a convex structure on'SC For  a, b e L ,  define a -< b if 
s(a) ~ s(b) for every s e 5  P, and put a ' =  [A, R\E[ if a = IA, E I. We can then 
derive, using axiom 5, that L becomes a a-or thomodular  poset and element 
of 5 P define states (i.e., probability measures) on L (Mackey, 1963; 
Maczynski, 1967). 
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A a-orthomodular poset ( = a quantum logic) L( -<, 0, 1, ') (0 :# 1) is a 
partially ordered set L with 0 and 1 with an orthocomplementation ': L ~ L 
such that: 

( i )  ( a ' ) '  = a .  

(ii) a < - b ~ b ' < - a ' .  
(iii) a v a ' =  1. 
(iv) (a i ) i~  ~ L, a i < aj, whenever i # j  ~ V i ~  aiEL. 
(v) a -< b ~ b = a v (a"/x b) [where a' /x  b exists due to (i), (ii), and 

(iv)]. 
Here v and A mean supremum and infimum, respectively, if they 

exist in k. A quantum logic L is a lattice if a v b, a A b exist in k for any 
a, b e k  (Beltrametti and Cassinelli, 1981; Beran, 1984; Gudder, 1979; 
Kalmbach, 1983; Mackey, 1963; Piron, 1976; Ptfik and Pulmannovfi, 1991; 
Varadarajan, 1968/1970). 

A state on L is a mapping m: L ~ [ 0 ,  1] such that 
(i) m ( 1 ) = l .  

(ii) (a i ) i~ ,  ai -< aj, for any i ,j ,  i # j  ~ m(Vi~ ~ ai) -- ~ , ~  m(ai). 
An observable on L is a mapping x: ~ ( E )  ~ L  such that 

(i)  x ( ~ )  = 1. 
(ii) x (E  ~) = x (E) '  (where E ' =  [~\E). 

(iii) x( U ~  E )  = V ~  x(E~) whenever (E~)~. = ~ (~ ) ,  E~ n E j  = 
for any i ,j ,  i #-j. 

In the probabilistic interpretation, L is considered as the set of all random 
events of a quantum mechanical experiment, states are interpreted as 
probability measures, and observables as random variables (Beltrametti and 
Cassinelli, 1981; Gudder, 1979; Mackey, 1963; Ptfik and Pulmannovfi, 1991). 

2. EXAMPLES OF LOGICS 

2.1. Every Boolean a-algebra is a quantum logic in a natural way. It 
can be easily seen that a quantum logic L is a Boolean a-algebra if and 
only if L is a distributive lattice. By the Loomis (1947) Sikorski (1949) 
theorem, if B is a Boolean a-algebra, then there is a measurable space 
(~, Y)  (where 5 f is a a-algebra of subsets of a set ~)  and there is a 
a-homomorphism h from 5z onto B. Moreover, by Varadarajan (1962, 
1968/1970), to every observable x: ~ ( ~ )  ~ B there is a (5 P, ~(~))-measur-  
able function f :  ~ -~  ~ such that x = h . f -  ~. If m is a state on B, then m �9 h 
is a probability measure on 5 ~. We see that in this case we obtain the usual 
Kolmogorovian model (~, Y,  m �9 h). 

Let L be a quantum logic, x an observable on L, f :  ~--* ~ a Borel 
function, and m a state on L. Then the range x (~(~) )  of x is a Boolean 
sub-a-algebra of L, x " f - ' - f ( x )  is an observable, and m . x - m x  is a 
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probability measure on ~ (~) ,  which is called the probability distribution of 
x in the state m. The expectation of x in m is defined by 

m(x) = .f~ t mx(dt) 

(if the integral exists). The variation of x in m is defined by 

varm(x) = .f[t - m(x)] 2 mx(dt) 

(if the integral exists and is finite). 
If xl . . . . .  x, are observables on a quantum logic L such that 

U;_<,xi(~(~)) = B ,  where B is a Boolean sub-a-algebra of L, we find a 
functional representation xi = h  . f 7  l, i = 1,2 . . . .  ,n,  where h is the 
Loomis-Sikorski a-homomorphism for B. This enables us to define a 
functional calculus for these observables (Pt~tk and Pulmannov/t, 1991; 
Varadarajan, 1968/1970). 

2.2. Let H be a Hilbert space (real or complex). The set L(H) of all 
closed linear subspaces of H with the partial order defined by inclusion and 
orthocomplementation M--.M' defined by M ' =  {~b~H: (qS, ~9)= 0 for 
u ~M}, M~L(H), is a complete orthomodular lattice, i.e., a quantum logic. 
By the spectral theorem, observables correspond to self-adjoint operators. 
If 2 < dim H < No, then, by Gleason's theorem, every state is of the form 

re(M) = tr TP M 

where pM is the orthogonal projection onto M, and T is a positive 
self-adjoint operator with trace tr T = 1 (e.g., Gleason, 1957; Dvure6enskij, 
1992; Pt/tk and Pulmannov/t, 1991; Varadarajan, 1968/1970). 

2.3. The projection lattice L(s#) of every von Neumann algebra d is 
a quantum logic (Kalmbach, 1983; Varadarajan, 1968/1970). 

2.4. Let X be a nonempty set. Let Q be a family of subsets of J2 such 
that: 

(i) XeQ. 
(ii)  A ~Q =~ X\A eQ. 

(iii) (Ai)i~ c Q, A~uAj = ~ for i # j  =~ U ~  AesQ. 
Then Q is a so-called concrete logic. It was introduced by Suppes 

(1966). Observables on Q are mappings f -  1: ~ ( ~ )  ~ Q, where f :  X --. ~ is 
a Q-measurable function (e.g., Gudder, 1979; Pt~tk and Pulmanov~, 1991). 

2.5. There are several constructions that enable us to construct new 
logics from given ones (Greechie, 1971; Kalmbach, 1983; Ptfik and Pul- 
mannovfi, 1991). 
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(a) For a~L, put Llo.al = {b e L : b  <- a}. Then LEo.~ 1 is a quantum logic 
with the relative orthocomplementation b'a= b' A a, b~L~o.ol. 

(b) Let L t ,L2 be quantum logics. Put L =L~ x L2, and define 
(a, b) -< (c, d) if a -< c and b -< d; (a, b)' = (a', b'). Then L is a quantum 
logic, the direct product of L~ and L2. 

(c) Let Ll,  L2 be quantum logics. Put L = L~ u L2, identify ("past") 
the zero element 01 in L~ with the zero element 02 in L2 and, similarly, the 
unit element 1~ with 12. Then define the partial order on L1 wL2 as the 
union of the partial orders -< ~ on L l and -< 2 on L2. Then L is a quantum 
logic, the horizontal sum or {0, 1}-pasting of Ll and L2. 

(d) Greechie constructions are {0, 1}-pastings of special atomic 
Boolean algebras additionally pasted in some atoms (Greechie, 1971; 
Kalmbach, 1983; Ptfik and Pulmannovfi, 1991). Greechie constructions can 
be represented by Greechie diagrams. A smooth line in a Greechie diagram 
of a logic L represents a Boolean algebra (a block of L), points represent 
atoms, and angles represent pastings (see Figures 1 and 2). 

Greechie found examples of quantum logics that have no states. The 
following example is a simplified version by Rogalewicz (Ptfik and Pulman- 
novfi, 1991). The quantum logic with the Greechie diagram of Figure 3 can 
be covered either by 12 disjoint blocks or by 13 disjoint blocks. Since for 
every state the sum of its values on all atoms of every block is 1, if a state 
exists, we have 12 = 13, a contradiction. 

We note that a direct product of a logic L~ with no state with L 2 = {0, 1} 
gives a logic with exactly one state (see Ptfik and Pulmannovfi, 1991). 

Let 5~ denote the set of all states on L, the state space of L. In the 
above examples we have seen that the state space of a logic L can be very 
poor, even empty. From the physical point of view, quantum logics with an 

Boolean algebra with 3 atoms Greechie diagram 

Dilworth's lattice 

Fig. 1. 

Fig. 2. 

v 

Greechie diagram 
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Fig. 3. 

ample supply of states are of interest. Let us consider the following 
definitions. A subset S c 5P(L) is: 

(a) rich if a, b ~ L ,  a ~ b ~ ~s~S:  s(a) = 1, s(b) < 1; 
(b) fu l l  if a, b E L ,  a ~ b ~ ~s~S:  s(a) > s(b); 
(c) unital if a s L ,  a 5 0  ~ 3sES:  s(a) = 1. 

It is easy to see that rich ~ full and unital. All a-algebras of sets, concrete 
logics, and Hilbert-space logics L ( H )  are examples of quantum logics with 
rich state spaces. 

3. COMPATIBILITY 

From the physical point of view, it is very important to characterize 
those subsets of a quantum logic L which can be embedded into Boolean 
sub-a-algebras of L. Elements of such subsets correspond to random events 
which can be simultaneously experimentally verified by the same experi- 
mental arrangement. The following definitions and results can be found in 
PtAk and Pulmannovfi (1991). 

A subset B of a quantum logic L is a Boolean sub-a-algebra of L if (i) 
0~B, (ii) a ~ B  ~ a ' ~ B ,  (iii) (ai)iEN~B and a~ < a j  whenever i ~ j  
~/i~n ai~B,  and (iv) a, b, c ~ B  ~ a v b exists in L and belongs to B, and 
(a v b) /x c = (a /x c) v (b /x e). A block of L is a maximal Boolean sub-a- 
algebra of L. Due to Zorn's lemma, every Boolean sub-a-algebra of L is 
contained in a block. 

A subset A c L is called compatible, or elements of A are called 
compatible elements, if there is a Boolean sub-a-algebra of L containing A. 

If A = {a, b }, then A is compatible if and only if a = (a/x b) v (a A b') 
and b = (a/x b) v (a ' /x  b) (in the sense that all the infima exist and the 
equality holds). If  {a, b } is compatible, we write a +-+ b. If  L is a lattice, 
then A is compatible if and only if a +--> b for every a, b cA (Varadarajan, 
1968/1970; Kalmbach, 1983; Ptfik and Pulmannovfi, 1991). 
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Let L be any logic and let F =  {al . . . .  , a ,} .  Define a ~  ', 
a~=a(aeL) .  If the elements AT=~a f(~ fe{0 ,  1}" all exist, we call the 
element 

c o m F =  V /~ af(~) 
fe{0 ,  l}" i ~  1 

the commutator of the set F (Marsden, 1970; Beran, 1984; Kalmbach, 1983; 
Ptfik and Pulmannovfi, 1991). For example, 

corn{a, b} = (a A b) v (a' /x b) v (a /x b') v (a' /x b') 

Proposition I (Ptfik and Pulmannov/t, 1991). A subset A of a logic L 
is compatible if and only if the element corn F exists for every finite set 
F c A ,  and c o m F = l .  

Let A be any subset of L. If the element 

com A = / ~  {corn F:  F ~ A, F is finite} 

exists, we will call it the commutator of A. If, for example, L is a lattice, 
then it is a a-lattice, and hence the commutator exists for every at most 
countable subset of L. 

Proposition 2 (Ptfik and Pulmannov~i, 1991). Let L be a quantum logic 
which is a lattice. If c = com A exists for a subset A of L, then: 

(i) c ~ a for any asA .  
(ii) {c /x a:a  cA } is a compatible set. 

(iii) If d s L  has the properties (i) and (ii), then d -< c. 
Let L be a lattice. Let {x i : i~ l }  be a system of observables on L. 

Define 

com{xs ' i~I}  = com(~)\,.~l xi(,C~(N))) 

Proposition 3 (Pulmannovfi and Dvure~enskij, 1985; Pt•k and Pulman- 
nov/L, 1991). Let {x i : i~I}  be a system of observables on a quantum logic 
L which is a lattice. If I is a countable set, then c = com{xi : i~I}  exists. 
Moreover, the mappings x ~ : ~ ( ~ )  ~L[o,d, defined by x~(E) = x~(E) /x c, 
i~L are compatible observables on L[o.d. 

4. JOINT D I S T R I B U T I O N S  OF O B S E R V A B L E S  OF G U D D E R  TYPE 

In what follows, we will assume that L is a quantum logic which is a 
lattice~ Let X~, . . . ,Xn be observables and let m be a state on L. For 
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El x " . .  • E~ ~ ( ~ n )  put 

#(E,  •  • En) = m ( x ~ ( E 1 )  A . . . A x , ( E , ) )  

If # can be extended to a measure on ~J(R"), we will call ~ the jo in t  

distribution o f  Gudder type of the observables x~ . . . . .  x,  in the state m 
(Gudder,  1968, 1979; Dvure~enskij, 1992; Dvure6enskij and Pulmannovfi, 
1984; Ptfik and Pulmannovfi, 1991). For  another type of joint distribution, 
the so-called Urbanik type, see Gudder, 1968, 1979; Pt/tk and Pulmannov~t, 
1991; Urbanik, 1961; Varadarajan (1968/1970). In particular, for one 
observable x,/~ = rex. If the joint distribution exists, we can define a joint 
distribution function F: R"-~ [0, 1] by 

F ( t l , . . . ,  t , )  = m ( x l ( - ~ ,  tl] A ' ' "  A Xn(--O0 , t]) 

and a joint characteristic function ~: R " ~  C by 

~(u~ . . . .  , u~) = exp i u; d F ( q  . . . . .  t , )  
n \ j ~ l  

Theorem 4 (Pulmannovfi and Dvure~enskij, 1985; Ptfik and Pulman- 
novfi, 1991). The joint distribution of Gudder type of the observables 
x~ . . . . .  x, in the state m exists if and only if m ( c o m { x ~ , . . . ,  x,  }) = 1. 

In particular, for compatible observables the joint distribution exists in 
every state. On the other hand, if the joint distribution exists in every state 
in a full or unital set of states, then the observables are compatible. 

Corollary. I f  the joint distribution of Gudder  type of the observables 
x~ . . . . .  x, exists in the state m, then the reduced compatible observables 
x ~ , . . . ,  x~ on the logic L~0,q, where c = com{x~ . . . . .  x,  }, have the same 
probability distribution in the state m I LE0,cl as the original observables in 
the state m. 

The above corollary describes the so-called "compatible reduction" of 
observables. 

Let L = L ( H )  be a Hilbert space logic. Let x~ . . . .  , x~ be observables 
on L (i.e., spectral measures) corresponding to self-adjoint operators 
Aj . . . . .  A~. Then c o m { x , , . . . ,  x~} can be alternatively defined as 

C o m { x  I . . . .  , x, } = {05 ~ H :  p ~ ( E 0 . . ,  px,,(E,,)~ 
= px~( ,  (e~ ~ ) ) . . .  px~c, ) (~(,))05 

for every permutation 7r of {1 . . . . .  n}} 

The set Com{x~ . . . . .  x, } is a closed subspace of H which is invariant 
under x~(E),  i = 1 . . . .  , n, E E ~ ( ~ ) .  The observables Xl . . . . .  x, have the 
joint distribution in the state m = ~ w ; P ~ , j  if and only if 05j~ 



Logicoalgebraic Structures I 1669 

Com{x~ . . . . .  x,} for all j < n. The compatible reduction is then the 
reduction of the self-adjoint operators A ~ , . . . ,  A, to the invariant subspac,e 
Com{x~ . . . .  , xn}, where the reduced operators commute (Dvure~enskij, 
1992; Ptfik and Pulmannov~, 199t). 

5. UNCERTAINTY RELATIONS 

Let L be a quantum logic, which is a lattice. Assume that there is a 
unital set ~ of states on L. For an observable x on L define 

V(x) = {m~Se : varm(x) < or} 

Let x ~ , . . . ,  xn be observables. Two cases can occur. 

(A) ( 3 E > 0 ) ( V m ~ i ~ n  ~ V ( x i ) )  :varm(x~) ' '  " varm(xn) >>-E 

(B) ( re  > 0 ) @ m e  ,@~ V ( x i ) ) ' v a r m ( x , ) . . .  v a r m ( x , ) < e  

If  (A) occurs, we say that the observables x l , . . . , x , ,  satisfy the 
uncertainty relation (Lahti, 1980; Pt~ik and Pulmannovfi, 1991). 

If  (A) is satisfied, then at least two of Xl, �9 �9 �9 xn must be unbounded 
[recall that an observable x is bounded if there is a compact set C c N such 
that x (C)  = 1]. 

Theorem 5 (Pulmannovfi and Dvure~enskij, 1985; Ptfik and Pulman- 
novfi, 1991). If the uncertainty relation (A) is satisfied by the observables 
xl , . . . , x,,, then 

c o m { x ~ , . . . ,  xn} = 0 

Consequently, x ~ , . . . ,  x, do not have the joint distribution of Gudder 
type in any state m e 5  ~, A well-known example of a pair of  observables 
satisfying the uncertainty relation are the position and momentum opera- 
tors on L2(~). 

6. A CLASSIFICATION OF QUANTUM LOGICS 

Let L be a quantum logic and let .Y(L) denote the set of all states on 
L (i.e., the state space of  L). Recall that a state m on L is called a 
{0, l l-state if m(a)~{0, 1} for every a ~ L .  According to Gudder (1979), a 
quantum logic L is concrete iff it has a full set of  {0, 1}-states. 

We will introduce four classes of  unital logics denoted by t~l, ~'(~92, ~3,  
and ~Q~4 (a +J/~ b means "a and b are not compatible"): 
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L ~ 2 " l  ~=> (a, b ~ L ,  a +~ b ~ 3 s r  :s(a) = 1, s(b) # 1) 

L ~ 2 " z . * ~ ( a ,  b e L ,  a + b  ~ Ve > O 3 s ~ ( L ) : s ( a ) =  l , s ( b )  2 l - e )  

L~2"3  ~ (a, b ~ L ,  a + b ~ s~5~(L) , s (a )  = 1,s(b)  = 1) 

L ~ 2"4 ~=~ (a, b ~ L, a ~c, b ~ 3 {0, 1 }-state s ~ 5P(L), s(a) = 1, s(b) = 1 

and the set of {0, 1}-states is unital) 

Theorem 6 (Pt~ik and Rogalewicz, 1983; and Ptfik and Pulmannovfi, 
1991). The following inclusions hold: 

~Q~4 C ~(~3 (22 ~Q~2 C ~O 1 

and all these inclusions are proper. Moreover, 5~ is the class of rich logics, 
and L 4 is the class of concrete logics. 

The class 2"~ of rich logics contains the Hilbert space logic L ( H )  of a 
Hilbert space H. Therefore, there are couples of observables on quantum 
logics in the class 2'1 which satisfy the uncertainty relations. The following 
theorem asserts that in 2"3 (and hence also in 2"4) uncertainty relations 
cannot occur for any observables. 

Theorem 7 (Pulmannovfi, 1988). If L belongs to 2"3, then the uncer- 
tainty relations cannot be satisfied by any pair of observables on L. 

It is not known whether the uncertainty relations can be satisfied by 
observables on a logic in the class 5~ 

7. BOOLEAN QUOTIENTS,  BELL INEQUALITIES,  AND JOINT 
DISTRIBUTIONS OF OBSERVABLES 

Let L be an orthomodular lattice. Recall that a subset J of L is a 
p-ideal  if (i) a ~ J ,  b ~ L ,  b < a ~ b 6 J ,  (ii) a, b ~ J  ~ a v b ~ J ,  (iii) a6J ,  
b e L  ~ (a v b') /x b EJ. A congruence of L is an equivalence relation 0 such 
that aOb ~ a'Ob' and alObl, a20b 2 ~ a 1 v a2Ob~ v b 2 and al ~, a2Obl /x b 2. 
If 0 is a congruence, the set of all congruence classes forms an orthomod- 
ular lattice called the quotient of L. If 0 is a congruence, then the 
equivalence class 0(0) containing 0 is a p-ideal. Conversely, if J is a p-ideal, 
then the relation 0 defined by aOb iff (a v b) A (a' v b') ~J  is a congruence 
and 0(0) = J. If 0 is a congruence and J is the corresponding p-ideal, we 
denote the corresponding quotient by "L/O, or equivalently by L / J  (Beran, 
1984; Kalmbach, 1983; Marsden, 1970). 

It was proved by Marsden (1970) that the quotient L / J  is a Boolean 
algebra iff J = Jc, where Jc denotes the smallest p-ideal of L containing all 
elements corn(a, b)' = (a v b) /x (a'  v b) /x (a v b ' ) /x  (a'  v b'), a, b ~L. 
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If L is an orthomodular a-lattice, we can introduce the notions of a 
a-p-ideal, a-congruence, and a-quotient in a natural way. For  example, a 
p-ideal J is a a-p-ideal provided that (a i ) i~  c J ~ Vi~N a ~ J .  

The famous Bell inequalities may be considered as "tests of the 
existence of hidden variables." According to the hidden variables hypo- 
thesis, there is a classical description "hidden" behind the quantum me- 
chanical description of  a physical system (Beltrametti and Cassinelli, 1981; 
Beltrametti and Maczynski, 1991; Gudder, 1979; Pitowski, 1989; Pulman- 
novfi and Majernik, 1992). Recently, the following types of Bell inequalities 
appeared in the context of  quantum logics (L is an orthomodular lattice 
and s is a state on L): the Bell-Wigner-type inequalities 

s(a) + s(b) + s(c) - s(a A b) - s(a A C) - s(b A c) < 1 (BW) 

(a, b, c~L) ,  and the Clauser-Horne-type inequalities 

1 > s ( b ) + s ( c ) - s ( a A b ) - s ( b  A C ) - - S ( c A d ) + s ( a A C )  >--0 (CH) 

(a, b, c, d e L )  (Beltrametti and Maczynski, 1991; Pitowski, 1989). 

Theorem 8 (Pulmannovfi and Majernik, 1992). Let L be an orthomod- 
ular a-lattice and s be a state on L. The following statements are equiva- 
lent: 

(i) There is a a-p-ideal J such that the quotient L / J  is a Boolean 
a-algebra and s(a) = 0 for all a sJ .  

(ii) There is a Boolean a-algebra B, a surjective a-homomorphism 
~ b : L ~ B ,  and a s t a t e Y o n  Bsuch  t h a t Y . q ~ = s .  

(iii) Inequalities (BW) are satisfied on (L, s). 
(iv) Inequalities (CH) are satisfied on (L, s). 
(v) The set X of all observables on L has a joint distribution in the 

state s. 

8. INDEPENDENCE OF CENTER, AUTOMORPHISM GROUP, 
AND STATE SPACE 

In the preceding section, we have seen several equivalent conditions on 
quantum logics. In the present section we show that such important 
characterizations as center, automorphism group, and state space are 
completely independent. 

We will consider an orthomodular poset L, that is, L is a partially 
ordered set with an orthocomplementation ': L ~ L such that (i) a" = a, (ii) 
a--<b ~ b ' - < a ' ,  (iii) a v a ' = l ,  (iv) a < - b ' ~ a  v b  exists in L, and (v) 
a <-- b ~ b = a v (a' A b). By a state on L we will mean a finitely additive 
state m (that is, m: L 4 [ 0 ,  1] such that m ( 1 ) =  1 and m(a v b) = m ( a ) +  
re(b) whenever a -< b'). The state space of  L is the set of all finitely additive 
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states on L. An  automorphism of  L is bijection ~: L ~ L such that  both  
and ~-~ preserve the o r thocomplementa t ion  and the partial ordering. The 
center of  L is the intersection o f  all blocks o f  L. The following theorem is 
the result o f  investigations carried out  by Greechie (1971), Schrag (1976), 
Ka lmbach  (1984), Kallus and Trnkovfi  (1987), N a v a r a  et al. (1988), and 
Nava ra  (1992). 

Theorem 9 (Navara ,  1992). Suppose that  K is a logic (o r t homodu la r  
poset) admit t ing at least one state, G is a group,  C is a compac t  convex 
subset o f  a locally convex topological  linear space, and B is a Boolean 
algebra. 

Then there is a logic L such that  K is a sublogic o f  L, the g roup  o f  
au tomorph isms  of  L is isomorphic  to G, the state space o f  L is affinely 
homeomorph ic  to C, and the center o f  L is Boolean isomorphic  to B. 
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